A CLASS OF FINSLER METRICS WITH ISOTROPIC S-CURVATURE

 $_{\rm BY}$

XINYUE CHENG*

Department of Mathematics, Chongqing Institute of Technology Chongqing 400050, P. R. China e-mail: chengxy@cqit.edu.cn

AND

ZHONGMIN SHEN **

Department of Mathematical Sciences Indiana University-Purdue University Indianapolis(IUPUI) 402 N. Blackford Street Indianapolis, IN 46202-3216, USA zshen@math.iupui.edu and Center of Mathematical Sciences, Zhejiang University

Hangzhou, Zhejiang Province 310027 P. R. China

ABSTRACT

In this paper, we study a class of Finsler metrics defined by a Riemannian metric and a 1-form. We characterize these metrics with isotropic S-curvature.

* Supported by a NNSFC grant (10671214) and by the NSF project of CQ CSTC. ** Supported by a NNSFC grant (10671214), a NSF grant (DMS-0810159) and the

C. K. Chao Foundation for Advanced Research Received December 11, 2006 and in revised form May 25, 2007

1. Introduction

The S-curvature $\mathbf{S} = S(x, y)$ is an important non-Riemannian quantity in Finsler geometry which was first introduced by the second author when he studied volume comparison in Riemann-Finsler geometry [12]. The second author proved that the Bishop-Gromov volume comparison holds for Finsler manifolds with vanishing S-curvature. He also proved that the S-curvature and the Ricci curvature determine the local behavior of the Busemann-Hausdorff measure of small metric balls around a point [14]. Recent study shows that the S-curvature plays a very important role in Finsler geometry (cf., [9], [15], [17]). It interacts with the flag curvature in a mysterious way. The flag curvature $\mathbf{K} = K(P, y)$ is a Riemannian quantity which is a natural extension of the sectional curvature in Riemannian geometry. The first problem is to understand Finsler metrics whose flag curvature is independent of P containing a tangent vector y, i.e., $\mathbf{K} = K(x, y)$ is a scalar function on the tangent bundle. For Riemannian metrics of scalar flag curvature, $\mathbf{K} = K(x)$ is independent of tangent vector y at each point x. For Finsler metrics of scalar flag curvature, the flag curvature can take a very general form. It is known that, for a Finsler metric F = F(x, y) of scalar flag curvature, if the S-curvature is almost isotropic, i.e.,

(1)
$$\mathbf{S} = (n+1)cF + \eta$$

where c = c(x) is a scalar function and η is a closed 1-form (if $\eta = 0$, then the S-curvature is said to be isotropic, see Definition 3.1), then the flag curvature must be in the following form

(2)
$$\mathbf{K} = \frac{3\tilde{c}_{x^m}y^m}{F} + \sigma,$$

where $\sigma = \sigma(x)$ and $\tilde{c} = \tilde{c}(x)$ are scalar functions with $c - \tilde{c} = constant$ [4]. This shows that S-curvature has impact on the flag curvature of Finsler metrics. Therefore it is an important problem to study and characterize Finsler metrics of (almost) isotropic S-curvature.

Throughout the paper, our index conventions are

$$1 \le i, j, k, \ldots \le n, \quad 2 \le A, B, C, \ldots \le n.$$

In Finsler geometry, there is an important class of Finsler metrics which were introduced and studied by G. Randers, hence are called **Randers metrics**. A Randers metric on a manifold M is a Finsler metric of the form $F = \alpha + \beta$, Vol. 169, 2009

319

where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form with $\|\beta_x\|_{\alpha} < 1$. Let

$$\begin{aligned} r_{ij} &= \frac{1}{2} (b_{i|j} + b_{j|i}), \\ r_{j} &:= b^{i} r_{ij}, \end{aligned} \qquad s_{ij} &= \frac{1}{2} (b_{i|j} - b_{j|i}), \\ s_{j} &:= b^{i} s_{ij}, \end{aligned}$$

where $b_{i|j}$ denote the covariant derivatives of β with respect to α . In [5], we proved that the Randers metric $F = \alpha + \beta$ has isotropic S-curvature, $\mathbf{S} = (n+1)c(x)F$, if and only if

(3)
$$r_{ij} + b_i s_j + b_j s_i = 2c(a_{ij} - b_i b_j).$$

See [1] and [20] for related work. A Finsler metric on a manifold M in the following form is said to be of **Randers type**,

(4)
$$F = k_1 \sqrt{\alpha^2 + k_2 \beta^2} + k_3 \beta,$$

where α is a Riemannian metric, β is a 1-form on M, $k_1 > 0, k_2$ and $k_3 \neq 0$ are constants. Clearly, Finsler metrics of Randers type are essentially Randers metrics. By a simple argument, one can prove the following

THEOREM 1.1: For a Finsler metric of Randers type, $F = k_1 \sqrt{\alpha^2 + k_2 \beta^2} + k_3 \beta$, it is of isotropic S-curvature, $\mathbf{S} = (n+1)cF$ if and only if β satisfies

(5)
$$r_{ij} + \tau(s_i b_j + s_j b_i) = \frac{2c(1 + k_2 b^2)k_1^2}{k_3}(a_{ij} - \tau b_i b_j),$$

where

$$b := \|\beta_x\|_{\alpha}, \quad \tau := k_3^2/k_1^2 - k_2.$$

Among Finsler metrics of Randers type, there are nontrivial projectively flat (α, β) -metrics with constant flag curvature [11].

If a Randers metric is of scalar flag curvature, then 1 and 2 are actually equivalent [7], [19]. In fact, if a Randers metric is of constant flag curvature, then it must be of constant S-curvature [1], [2]. We have classified Randers metrics of scalar flag curvature and isotropic S-curvature [4], [7]. Further, we have characterized the locally projectively flat Finsler metrics with isotropic S-curvature [6].

It is natural to consider general Finsler metrics defined by a Riemannian metric $\alpha = \sqrt{a_{ij}y^iy^j}$ and a 1-form $\beta = b_iy^i$ with $\|\beta_x\|_{\alpha} < b_o$. They are expressed in the form $F = \alpha\phi(s), s = \beta/\alpha$, where $\phi(s)$ is a C^{∞} positive function on $(-b_o, b_o)$. It is known that $F = \alpha\phi(\beta/\alpha)$ is a (positive definite) Finsler metric

for any α and β with $\|\beta_x\|_{\alpha} < b_o$ if and only if ϕ satisfies the following condition (cf., [18] and [16]):

(6)
$$\phi(s) - s\phi'(s) + (\rho^2 - s^2)\phi''(s) > 0, \quad |s| \le \rho < b_o.$$

Such a metric is called an (α, β) -metric. Clearly, Finsler metrics of Randers type are special (α, β) -metrics defined by $\phi = k_1 \sqrt{1 + k_2 s^2} + k_3 s$.

For a positive C^{∞} function $\phi = \phi(s)$ on $(-b_o, b_o)$ and a number $b \in [0, b_o)$, let

$$\Phi := -(Q - sQ')\{n\Delta + 1 + sQ\} - (b^2 - s^2)(1 + sQ)Q'',$$

where $\Delta := 1 + sQ + (b^2 - s^2)Q'$ and $Q := \phi'/(\phi - s\phi')$. In this paper, we prove the following

THEOREM 1.2: Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric on a manifold and $b := \|\beta_x\|_{\alpha}$. Suppose that $\phi \neq k_1\sqrt{1+k_2s^2} + k_3s$ for any constants $k_1 > 0, k_2$ and k_3 . Then F is of isotropic S-curvature, $\mathbf{S} = (n+1)cF$, if and only if one of the following holds

0.

(i) β satisfies

(7)
$$r_j + s_j = 0$$

and $\phi = \phi(s)$ satisfies

(8)
$$\Phi =$$

In this case, $\mathbf{S} = 0$.

(ii) β satisfies

(9)
$$r_{ij} = \epsilon \left\{ b^2 a_{ij} - b_i b_j \right\}, \quad s_j = 0$$

where $\epsilon = \epsilon(x)$ is a scalar function, and $\phi = \phi(s)$ satisfies

(10)
$$\Phi = -2(n+1)k\frac{\phi\Delta^2}{b^2 - s^2}$$

where k is a constant. In this case, $\mathbf{S} = (n+1)cF$ with $c = k\epsilon$. (iii) β satisfies

(11)
$$r_{ij} = 0, \quad s_j = 0.$$

In this case, $\mathbf{S} = 0$, regardless of the choice of a particular ϕ .

It is easy to see that (11) implies (9), while (9) implies (7). The condition (7) is equivalent to $b := \|\beta_x\|_{\alpha} = constant$. See Lemma 3.3 below. Thus (8) and (10) are independent of $x \in M$. Any solution $\phi = \phi(s)$ of (10) is regular on (-b, b), but it might be singular at $s = \pm b$.

The mean Landsberg curvature **J** is another important non-Riemannian quantity. It has been proved that for an (α, β) -metric $F = \alpha \phi(\beta/\alpha)$, if β has constant length and ϕ satisfies (8), then F is a weakly Landsberg metric, i.e., $\mathbf{J} = 0$. See [10].

We have the following two interesting examples.

Example 1.1: Let $F = \alpha + \beta$ be the family of Randers metrics on S^3 constructed in [3] (see also [14]). It is shown that $r_{ij} = 0$ and $s_j = 0$. Thus for any C^{∞} positive function $\phi = \phi(s)$ satisfying (6), the (α, β) -metric $F = \alpha \phi(\beta/\alpha)$ has vanishing S-curvature.

Example 1.2: Let $F = \alpha \phi(\beta/\alpha)$ be an (α, β) -metric defined on an open subset in R^3 . If, at a point $\mathbf{x} = (x, y, z) \in R^3$ and in the direction $\mathbf{y} = (u, v, w) \in T_{\mathbf{x}}R^3$, $\alpha = \alpha(\mathbf{x}, \mathbf{y})$ and $\beta = \beta(\mathbf{x}, \mathbf{y})$ are given by

$$\begin{split} \alpha &:= \sqrt{u^2 + e^{2x}(v^2 + w^2)}, \\ \beta &:= u, \end{split}$$

then β satisfies (9) with $\epsilon = 1$, b = 1. Thus if $\phi = \phi(s)$ satisfies (10) for some constant k, then $F = \alpha \phi(\beta/\alpha)$ is of constant S-curvature $\mathbf{S} = (n+1)cF$. However, we can not find an explicit solution to (10) with $k \neq 0$.

ACKNOWLEDGMENT: The authors would like to thank the referee for his very detailed report on this paper and many valuable suggestions.

2. Volume forms

The S-curvature is associated with a volume form. There are two important volume forms in Finsler geometry. One is the Busemann-Hausdorff volume form and the other is the Holmes-Thompson volume form.

The Busemann-Hausdorff volume form $dV_{BH} = \sigma_{BH}(x)dx$ is given by

$$\sigma_{BH}(x) = \frac{\omega_n}{\operatorname{Vol}\left\{(y^i) \in R^n \colon F\left(x, y^i \frac{\partial}{\partial x^i}\right) < 1\right\}}$$

and the Holmes-Thompson volume form $dV_{HT} = \sigma_{HT}(x)dx$ is given by

$$\sigma_{HT}(x) = \frac{1}{\omega_n} \int_{\left\{ (y^i) \in R^n | F\left(x, y^i \frac{\partial}{\partial x^i}\right) < 1 \right\}} \det(g_{ij}) dy.$$

Here Vol denotes the Euclidean volume and

$$\omega_n := \operatorname{Vol}(\mathbf{B}^n(1)) = \frac{1}{n} \operatorname{Vol}(\mathbf{S}^{n-1}) = \frac{1}{n} \operatorname{Vol}(\mathbf{S}^{n-2}) \int_0^\pi \sin^{n-2}(t) dt$$

denotes the Euclidean volume of the unit ball in \mathbb{R}^n . When $F = \sqrt{g_{ij}(x)y^iy^j}$ is a Riemannian metric, both volume forms are reduced to the same Riemannian volume form

$$dV_{BH} = dV_{HT} = \sqrt{\det(g_{ij}(x))}dx.$$

For an (α, β) -metric, we have the following formulas for the volume forms dV_{BH} and dV_{HT} .

PROPOSITION 2.1: Let $F = \alpha \phi(s), s = \beta/\alpha$ be an (α, β) -metric on an *n*-dimensional manifold M and $b := \|\beta_x\|_{\alpha}$. Let $dV = dV_{BH}$ or dV_{HT} . Let

$$f(b) := \begin{cases} \frac{\int_0^{\pi} \sin^{n-2} t dt}{\int_0^{\pi} \frac{\sin^{n-2} t}{\phi(b\cos t)^n} dt} & \text{if } dV = dV_{BH} \\ \frac{\int_0^{\pi} (\sin^{n-2} t) T(b\cos t) dt}{\int_0^{\pi} \sin^{n-2} t dt} & \text{if } dV = dV_{HT}, \end{cases}$$

where $T(s) := \phi(\phi - s\phi')^{n-2}[(\phi - s\phi') + (b^2 - s^2)\phi'']$ and $b := \|\beta_x\|_{\alpha}$. Then the volume form dV is given by

$$dV = f(b)dV_{\alpha},$$

where $dV_{\alpha} = \sqrt{\det(a_{ij})} dx$ denotes the Riemannian volume form of α .

Proof. In a coordinate system, the determinant of $g_{ij} := \frac{1}{2} [F^2]_{y^i y^j}$ is given by (cf., [16])

$$\det(g_{ij}) = \phi^{n+1}(\phi - s\phi')^{n-2}[(\phi - s\phi') + (b^2 - s^2)\phi'']\det(a_{ij}).$$

First we take an orthonormal basis at x with respect to α so that

$$\alpha = \sqrt{\sum (y^i)^2}, \quad \beta = by^1,$$

where $b = \|\beta_x\|_{\alpha}$. Then the volume form $dV_{\alpha} = \sigma_{\alpha} dx$ at x is given by

$$\sigma_{\alpha} = \sqrt{\det(a_{ij})} = 1.$$

Vol. 169, 2009

In order to evaluate the integrals

$$\operatorname{Vol}\left\{(y^{i}) \in R^{n} \colon F\left(x, y^{i} \frac{\partial}{\partial x^{i}}\right) < 1\right\} = \int_{F(x, y) < 1} dy = \int_{\alpha \phi(\beta/\alpha) < 1} dy$$

and

$$\int_{F(x,y)<1} \det(g_{ij}) dy = \int_{\alpha\phi(\beta/\alpha)<1} \det(g_{ij}) dy$$

we take the following coordinate transformation, $\psi:(s,u^A)\to (y^i)$:

(12)
$$y^1 = \frac{s}{\sqrt{b^2 - s^2}} \bar{\alpha}, \quad y^A = u^A,$$

where $\bar{\alpha} = \sqrt{\sum_{A=2}^{n} (u^A)^2}$. Then

(13)
$$\alpha = \frac{b}{\sqrt{b^2 - s^2}}\bar{\alpha}, \quad \beta = \frac{bs}{\sqrt{b^2 - s^2}}\bar{\alpha}$$

Thus

$$F = \alpha \phi(\beta/\alpha) = \frac{b\phi(s)}{\sqrt{b^2 - s^2}}\bar{\alpha}$$

and the Jacobian of the transformation $\psi:(s,u^A)\to (y^i)$ is given by

$$\frac{b^2}{(b^2 - s^2)^{3/2}}\bar{\alpha}.$$

Then

$$\begin{aligned} \operatorname{Vol}\{(y^{i}) \in R^{n} \colon F(x,y) < 1\} &= \int_{\frac{b\phi(s)}{\sqrt{b^{2}-s^{2}}}\bar{\alpha} < 1} \frac{b^{2}}{(b^{2}-s^{2})^{3/2}} \bar{\alpha} ds du \\ &= \int_{-b}^{b} \frac{b^{2}}{(b^{2}-s^{2})^{3/2}} \Big[\int_{\bar{\alpha} < \frac{\sqrt{b^{2}-s^{2}}}{b\phi(s)}} \bar{\alpha} du \Big] ds \\ &= \frac{1}{n} \operatorname{Vol}(\mathbf{S}^{n-2}) \int_{-b}^{b} \frac{b^{2}}{(b^{2}-s^{2})^{3/2}} \Big(\frac{\sqrt{b^{2}-s^{2}}}{b\phi(s)} \Big)^{n} ds \\ &= \frac{1}{n} \operatorname{Vol}(\mathbf{S}^{n-2}) \int_{-b}^{b} \frac{(b^{2}-s^{2})^{(n-3)/2}}{b^{n-2}\phi(s)^{n}} ds \\ &= \frac{1}{n} \operatorname{Vol}(\mathbf{S}^{n-2}) \int_{0}^{\pi} \frac{\sin^{n-2}t}{\phi(b\cos t)^{n}} dt \quad (s=b\cos t). \end{aligned}$$

Therefore

(14)
$$\sigma_{BH} = \frac{\int_0^{\pi} \sin^{n-2} t dt}{\int_0^{\pi} \frac{\sin^{n-2} t}{\phi(b \cos t)^n} dt}$$

Let

(15)
$$T(s) := \phi(\phi - s\phi')^{n-2} [(\phi - s\phi') + (b^2 - s^2)\phi''].$$

Then

$$\det(g_{ij}) = \phi(s)^n T(s) \det(a_{ij}).$$

By a similar argument, we get

$$\sigma_{HT} = \frac{1}{\omega_n} \int_{F(x,y)<1} \phi(s)^n T(s) dy^1 \cdots dy^n$$

= $\frac{1}{n\omega_n} \operatorname{Vol}(S^{n-2}) \int_{-b}^{b} \frac{b^2}{(b^2 - s^2)^{3/2}} \left(\frac{\sqrt{b^2 - s^2}}{b}\right)^n T(s) ds$
= $\frac{\int_0^{\pi} (\sin^{n-2} t) T(b \cos t) dt}{\int_0^{\pi} \sin^{n-2} t dt}.$

Thus

(16)
$$\sigma_{HT} = \frac{\int_0^{\pi} (\sin^{n-2} t) T(b \cos t) dt}{\int_0^{\pi} \sin^{n-2} t dt}.$$

The above formulas for σ_{BH} and σ_{HT} are given in a special coordinate system at x and $\sigma_{\alpha} = 1$. Thus $dV = f(b)dV_{\alpha}$. This proves the proposition.

Note that if b = constant, then f(b) = constant. In this case, both dV_{BH} and dV_{HT} are constant multiples of dV_{α} .

It is surprising to see that $dV_{HT} = dV_{\alpha}$ for certain functions ϕ .

COROLLARY 2.2: Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric on an *n*dimensional manifold M. Let T = T(s) be defined in (15). Suppose that T(s) - 1 is an odd function of s. Then $dV_{HT} = dV_{\alpha}$.

Proof. Let h(s) = T(s) - 1. By assumption h(-s) = -h(s). It is easy to see that

$$\int_0^{\pi} (\sin^{n-2} t) h(b\cos t) dt = 0.$$

Thus

$$\int_0^{\pi} (\sin^{n-2} t) T(b\cos t) dt = \int_0^{\pi} \sin^{n-2} t dt$$

This implies that $\sigma_{HT} = 1$ in the above special coordinate system at x. Then in a general coordinate system $\sigma_{HT} = \sigma_{\alpha}$.

If $\phi = 1 + s$, then T = 1 + s and T(s) - 1 is an odd function of s. Then for a Randers metric, $dV_{HT} = dV_{\alpha}$. This fact is known to Y. B. Shen.

3. The S-Curvature

In this section, we are going to find a formula for the S-curvature of an (α, β) metric on an *n*-dimensional manifold M.

Let F = F(x, y) be a Finsler metric on an *n*-dimensional manifold M. There is a notion of distortion $\tau = \tau(x, y)$ on TM associated with a volume form $dV = \sigma(x)dx$.

$$\tau(x,y) = \ln \frac{\sqrt{\det(g_{ij}(x,y))}}{\sigma(x)}$$

In fact, $\tau(x, y)$ depends only on $F_x := F|_{T_xM}$ on T_xM at each point x. Moreover, $\tau(x, y) = \tau(x)$ at a point $x \in M$ if and only if F_x is Euclidean on T_xM . The S-curvature is defined by

$$\mathbf{S}(x,y) = \frac{d}{dt} \Big[\tau \Big(c(t), \dot{c}(t) \Big) \Big] \Big|_{t=0},$$

where c(t) is the geodesic with c(0) = x and $\dot{c}(0) = y$ [14]. From the definition, we see that the S-curvature $\mathbf{S}(y)$ measures the rate of change in the distortion on (T_xM, F_x) in the direction $y \in T_xM$.

Let $G = y^i \frac{\partial}{\partial x^i} - 2G^i \frac{\partial}{\partial y^i}$ denote the spray of F and $dV = \sigma(x)dx$ be a volume form on M. The spray coefficients G^i are defined by

$$G^{i} = \frac{1}{4}g^{il} \{ [F^{2}]_{x^{j}y^{l}}y^{j} - [F^{2}]_{x^{l}} \}.$$

Then the S-curvature (with respect to dV) is given by

$$\mathbf{S} = \frac{\partial G^m}{\partial y^m} - y^m \frac{\partial}{\partial x^m} (\ln \sigma).$$

An important property is that $\mathbf{S} = 0$ for Berwald spaces with respect to the Busemann-Hausdorff volume form dV_{BH} [12], [13]. This explains why we choose the Busemann-Hausdorff volume form to define the S-curvature of a Finsler metric.

Definition 3.1: Let F be a Finsler metric on an *n*-dimensional manifold M. Let **S** denote the S-curvature of F with respect to dV_{BH} .

(a) F is of almost isotropic S-curvature if

$$\mathbf{S} = (n+1)cF + \eta,$$

where c = c(x) is a scalar function and η is a closed 1-form;

- (b) F is of isotropic S-curvature if c = c(x) is a scalar function and $\eta = 0$;
- (c) F is of constant S-curvature if c is a constant and $\eta = 0$.

Now we compute the S-curvature of an (α, β) -metric on a manifold. Let

$$F = \alpha \phi(s), \quad s = \beta/\alpha.$$

Let \overline{G}^i denote the spray coefficients of α . We have the following formula for the spray coefficients G^i of F (cf., [8], [16]):

$$G^{i} = \bar{G}^{i} + \alpha Q s^{i}{}_{0} + \Theta \{-2Q\alpha s_{0} + r_{00}\} \frac{y^{i}}{\alpha} + \Psi \{-2Q\alpha s_{0} + r_{00}\} b^{i},$$

where $s_{j}^{i} := a^{ih} s_{hj}, s_{0}^{i} := s_{j}^{i} y^{j}, s_{0} := s_{i} y^{i}, r_{00} := r_{ij} y^{i} y^{j}$ and

(17)
$$Q := \frac{\phi'}{\phi - s\phi'}, \quad \Theta = \frac{Q - sQ'}{2\Delta}, \quad \Psi = \frac{Q'}{2\Delta},$$

where $\Delta := 1 + sQ + (b^2 - s^2)Q'$.

It is easy to see that if $\phi = \phi(s)$ satisfies

$$b^2Q + s = 0,$$

then

$$\phi = a_0 \sqrt{b^2 - s^2}$$

where a_0 is a number independent of s.

LEMMA 3.2: If $\phi = \phi(s)$ satisfies

$$\Psi = constant,$$

then

$$\phi = k_1 \sqrt{1 + k_2 s^2} + k_3 s,$$

where k_1, k_2 and k_3 are numbers independent of s.

To compute the S-curvature, we need the following identities:

$$\frac{\partial s}{\partial y^m} = \frac{1}{\alpha} \Big\{ b_m - s \frac{y_m}{\alpha} \Big\},\\ \frac{\partial \alpha}{\partial y^m} = \frac{y_m}{\alpha},\\ \frac{\partial \bar{G}^m}{\partial y^m} = y^m \frac{\partial}{\partial x^m} \Big(\ln \sigma_\alpha \Big),$$

where $y_m := a_{mj} y^j$. Using the above identities, we obtain

$$\frac{\partial G^m}{\partial y^m} = y^m \frac{\partial}{\partial x^m} (\ln \sigma_\alpha) + 2\Psi(r_0 + s_0) - \alpha^{-1} \frac{\Phi}{2\Delta^2} (r_{00} - 2\alpha Q s_0),$$

326

where

(18)
$$\Phi := -(Q - sQ')\{n\Delta + 1 + sQ\} - (b^2 - s^2)(1 + sQ)Q''.$$

By Proposition 2.1, $dV = \sigma dx = f(b)\sigma_{\alpha} dx$. Thus

$$y^{m}\frac{\partial}{\partial x^{m}}(\ln \sigma) = \frac{f'(b)}{f(b)}y^{m}\frac{\partial b}{\partial x^{m}} + y^{m}\frac{\partial}{\partial x^{m}}(\ln \sigma_{\alpha}).$$

(19)
$$y^m \frac{\partial b}{\partial x^m} = \frac{b^i b_{i|m} y^m}{b} = \frac{r_0 + s_0}{b}.$$

Then the S-curvature is given by

(20)
$$\mathbf{S} = \left\{ 2\Psi - \frac{f'(b)}{bf(b)} \right\} (r_0 + s_0) - \alpha^{-1} \frac{\Phi}{2\Delta^2} (r_{00} - 2\alpha Q s_0)$$

LEMMA 3.3: Let β be a 1-form on a Riemannian manifold (M, α) . Then $b(x) := \|\beta_x\|_{\alpha} = constnt$ if and only if β satisfies the following equation:

$$(21) r_j + s_j = 0.$$

Proof. This follows immediately from (19).

In the case when b = constant, the S-curvature is given by

(22)
$$\mathbf{S} = -\alpha^{-1} \frac{\Phi}{2\Delta^2} (r_{00} - 2\alpha Q s_0).$$

We can prove the following

PROPOSITION 3.4: Let $F = \alpha \phi(\beta/\alpha)$ be an (α, β) -metric on an *n*-manifold. If β and ϕ satisfy conditions in Theorem 1.2 (i) or (ii) or (iii), then F has isotropic S-curvature.

Proof. If β satisfies (7) and ϕ satisfies (8), then it follows from (20) that $\mathbf{S} = 0$. If β satisfies (9), then

$$r_{00} = \epsilon (b^2 - s^2) \alpha^2, \quad r_0 = 0, \quad s_0 = 0.$$

By (10) and the above equations, we get from (20) that

$$\mathbf{S} = -\alpha\epsilon(b^2 - s^2)\frac{\Phi}{2\Delta^2} = (n+1)k\epsilon\alpha\phi = (n+1)k\epsilon F.$$

If β satisfies (11), then

 $r_{00} = 0, \quad r_0 = 0, \quad s_0 = 0.$

It follows from (20) that $\mathbf{S} = 0$.

To prove the necessary conditions in Theorem 1.2, we consider an (α, β) metric $F = \alpha \phi(\beta/\alpha)$ with isotropic S-curvature, $\mathbf{S} = (n+1)cF$. By (20), the equation $\mathbf{S} = (n+1)cF$ is equivalent to the following equation:

(23)
$$\alpha^{-1} \frac{\Phi}{2\Delta^2} (r_{00} - 2\alpha Q s_0) - 2\Psi (r_0 + s_0) = -(n+1)cF + \theta,$$

where

(24)
$$\theta := -\frac{f'(b)}{bf(b)}(r_0 + s_0).$$

To simplify the equation (23), we choose special coordinates. Fix an arbitrary point x. Take a local coordinate system at x as in (12). We have

$$r_1 = br_{11},$$
 $r_A = br_{1A},$
 $s_1 = 0,$ $s_A = bs_{1A}.$

Let

$$\bar{r}_{10} := \sum_{A=2}^{n} r_{1A} y^{A}, \quad \bar{s}_{10} := \sum_{A=2}^{n} s_{1A} y^{A} \quad \bar{r}_{00} := \sum_{A,B=2}^{n} r_{AB} y^{A} y^{B},$$
$$\bar{r}_{0} := \sum_{A=2}^{n} r_{A} y^{A} \quad \bar{s}_{0} := \sum_{A=2}^{n} s_{A} y^{A}.$$

Let $\theta = t_i y^i$. Then t_i are given by

(25)
$$t_1 = -\frac{f'(b)}{f(b)}r_{11}, \quad t_A = -\frac{f'(b)}{f(b)}(r_{1A} + s_{1A}).$$

From (12), we have

(26)
$$r_0 = \frac{sbr_{11}}{\sqrt{b^2 - s^2}}\bar{\alpha} + b\bar{r}_{10}, \quad s_0 = \bar{s}_0 = b\bar{s}_{10}$$

and

(27)
$$r_{00} = \frac{s^2 \bar{\alpha}^2}{b^2 - s^2} r_{11} + 2 \frac{s \bar{\alpha}}{\sqrt{b^2 - s^2}} \bar{r}_{10} + \bar{r}_{00}.$$

Substituting (26) and (27) into (23) and by use of (13), we find that (23) is equivalent to the following two equations:

(28)
$$\frac{\Phi}{2\Delta^2}(b^2 - s^2)\bar{r}_{00} = -\left\{s\left(\frac{s\Phi}{2\Delta^2} - 2\Psi b^2\right)r_{11} + (n+1)cb^2\phi - sbt_1\right\}\bar{\alpha}^2,$$

(29)
$$\left(\frac{s\Phi}{\Delta^2} - 2\Psi b^2\right)(r_{1A} + s_{1A}) - (b^2Q + s)\frac{\Phi}{\Delta^2}s_{1A} - bt_A = 0.$$

Let

$$\Upsilon := \left[\frac{s\Phi}{\Delta^2} - 2\Psi b^2\right]'.$$

We see that $\Upsilon = 0$ if and only if

$$\frac{s\Phi}{\Delta^2} - 2\Psi b^2 = b^2\mu,$$

where $\mu = \mu(x)$ is independent of s. We divide the problem into three cases: (i) $\Phi = 0$, (ii) $\Phi \neq 0$, $\Upsilon = 0$ and (iii) $\Phi \neq 0$, $\Upsilon \neq 0$.

4. $\Phi = 0$

In this section, we study the simplest case when $\Phi = 0$.

PROPOSITION 4.1: Let $F = \alpha \phi(\beta/\alpha)$ be an (α, β) -metric. Assume that $\Phi = 0$ but $\phi \neq k_1\sqrt{1+k_2s^2} + k_3s$ for any constants $k_1 > 0, k_2$ and k_3 . If F has isotropic S-curvature, then

$$r_0 + s_0 = 0.$$

In this case, $\mathbf{S} = 0$.

Proof. Take a special coordinate system at x as in (12). (28) and (29) are reduced to

(30)
$$s\left\{\frac{f'(b)}{bf(b)} - 2\Psi\right\}b^2r_{11} + (n+1)cb^2\phi = 0$$

(31)
$$\left\{\frac{f'(b)}{bf(b)} - 2\Psi\right\}b^2(r_{1A} + s_{1A}) = 0.$$

Letting s = 0 in (30) yields

$$c = 0$$

and

(32)
$$\left\{\frac{f'(b)}{bf(b)} - 2\Psi\right\}r_{11} = 0.$$

If

$$\frac{f'(b)}{bf(b)} - 2\Psi = 0,$$

then, by Lemma 3.2, we have

$$\phi = k_1 \sqrt{1 + k_2 s^2} + k_3 s,$$

where $k_1 > 0$, k_2 and k_3 are numbers independent of s. But this is impossible by assumption. Thus

$$\frac{f'(b)}{bf(b)} - 2\Psi \neq 0.$$

From (30) and (31), we conclude that

$$r_{11} = 0, \quad r_{1A} + s_{1A} = 0.$$

5. $\Phi \neq 0$, $\Upsilon = 0$

First, note that $\Upsilon = 0$ implies that

(33)
$$\frac{s\Phi}{\Delta^2} - 2\Psi b^2 = b^2 \mu,$$

where $\mu = \mu(x)$ is a function on M independent of s. First, we prove the following

LEMMA 5.1: Let $F = \alpha \phi(\beta/\alpha)$ be an (α, β) -metric. Assume that $\Phi \neq 0$ and $\Upsilon = 0$. If F has isotropic S-curvature, $\mathbf{S} = (n+1)cF$, then β satisfies

(34)
$$r_{ij} = ka_{ij} - \epsilon b_i b_j + \frac{1}{b^2} (r_i b_j + r_j b_i),$$

where k = k(x), $\epsilon = \epsilon(x)$, and $\phi = \phi(s)$ satisfies the following ODE:

(35)
$$(k - \epsilon s^2) \frac{\Phi}{2\Delta^2} = \{\nu + (k - \epsilon b^2)\mu\}s - (n+1)c\phi,$$

where $\nu = \nu(x)$. If $s_0 \neq 0$, then ϕ satisfies the following additional ODE:

(36)
$$\frac{\Phi}{\Delta^2}(Qb^2 + s) = b^2(\mu + \lambda),$$

where $\lambda = \lambda(x)$.

Proof. Since $\Phi \neq 0$ and notice that \bar{r}_{00} and $\bar{\alpha}$ are independent of s, it follows from (28) and (29) that in a special coordinate system (s, y^a) at a point x,

(37)
$$r_{AB} = k\delta_{AB},$$

(38)
$$s\left(\frac{s\Phi}{2\Delta^2} - 2\Psi b^2\right)r_{11} + (n+1)cb^2\phi + k\frac{\Phi}{2\Delta^2}(b^2 - s^2) = bst_1,$$

(39)
$$\left(\frac{s\Phi}{\Delta^2} - 2\Psi b^2\right)(r_{1A} + s_{1A}) - (b^2Q + s)\frac{\Phi}{\Delta^2}s_{1A} - bt_A = 0,$$

where k = k(x) is independent of s.

Let

$$r_{11} = -(k - \epsilon b^2).$$

Then (34) holds. By (33), we have

$$\frac{s\Phi}{2\Delta^2} - 2\Psi b^2 = b^2\mu - \frac{s\Phi}{2\Delta^2}.$$

Then (38) and (39) become

(40)
$$b(k-\epsilon s^2)\frac{\Phi}{2\Delta^2} = st_1 + sb\mu(k-b^2\epsilon) - (n+1)cb\phi.$$

(41)
$$b^2 \mu (r_{1A} + s_{1A}) - \frac{\Phi}{\Delta^2} (Qb^2 + s)s_{1A} - bt_A = 0.$$

Letting $t_1 = b\nu$ in (40) we get (35).

Suppose that $s_0 \neq 0$. Rewrite (41) as

$$\left\{b^2\mu - \frac{\Phi}{\Delta^2}(Qb^2 + s)\right\}s_{1A} = bt_Abb - b^2\mu r_{1A}$$

We can see that there is a function $\lambda = \lambda(x)$ on M such that

$$\mu b^2 - \frac{\Phi}{\Delta^2} (Qb^2 + s) = -b^2 \lambda.$$

This gives (36).

LEMMA 5.2: Let $F = \alpha \phi(\beta/\alpha)$ be an (α, β) -metric. Assume that

$$\phi \neq k_1 \sqrt{1 + k_2 s^2} + k_3 s$$

for any constants $k_1 > 0, k_2$ and k_3 . If $\Upsilon = 0$, then b = constant.

Proof. Suppose that $b \neq constant$. Then b can be viewed as a variable over the manifold. By assumption,

$$\frac{s\Phi}{\Delta^2} - 2\Psi b^2 = b^2\mu,$$

where $\mu = \mu(x)$. Note that $\Delta^2(\frac{s\Phi}{\Delta^2} - 2\Psi b^2 - b^2\mu)$ is a polynomial of degree six in b by (17). More precisely, we have

(42)
$$-\mu Q'^2 b^6 - \left\{ Q'^2 - 2\mu Q' (1 + sQ - s^2 Q') \right\} b^4 + (\cdots) b^2 + (\cdots) = 0.$$

Thus

$$\mu Q'^2 = 0, \quad Q'^2 - 2\mu Q'(1 + sQ - s^2Q') = 0.$$

Then Q' = 0, which implies that $\phi = 1 + cs$. This is impossible as we exclude the case $\phi = k_1 \sqrt{1 + k_2 s^2} + k_3 s$.

PROPOSITION 5.3: Let $F = \alpha \phi(\beta/\alpha)$ be an (α, β) -metric. Suppose that $b^2Q + s \neq 0$, $\Phi \neq 0$ and $\Upsilon = 0$. If F has isotropic S-curvature, $\mathbf{S} = (n+1)cF$, then

(43)
$$r_{ij} = \epsilon (b^2 a_{ij} - b_i b_j), \quad s_j = 0,$$

where $\epsilon = \epsilon(x)$ is a scalar function, and $\phi = \phi(s)$ satisfies

(44)
$$\epsilon(b^2 - s^2)\Phi = -2(n+1)c\phi\Delta^2.$$

If $\epsilon \neq 0$, then $c/\epsilon = constant$.

Proof. First by Lemmas 5.2 and 3.3, we have

$$r_0 + s_0 = 0$$

Then by (20), we receive

$$\mathbf{S} = -\alpha^{-1} \frac{\Phi}{2\Delta^2} \{ r_{00} - 2\alpha Q s_0 \}.$$

By Lemma 5.1,

$$r_{00} = (k - \epsilon s^2)\alpha^2 + \frac{2s}{b^2}r_0\alpha.$$

Then

$$\mathbf{S} = -(k - \epsilon s^2) \frac{\Phi}{2\Delta^2} \alpha + \frac{\Phi}{b^2 \Delta^2} (b^2 Q + s) s_0.$$

By (35), we get

(45)
$$\mathbf{S} = -s\{\nu + (k - \epsilon b^2)\mu\}\alpha + \frac{\Phi}{b^2\Delta^2}(b^2Q + s)s_0 + (n+1)c\phi\alpha.$$

By our assumption, $\mathbf{S} = (n+1)cF$, we get from (45) that

(46)
$$-s\{\nu + (k - \epsilon b^2)\mu\}\alpha + \frac{\Phi}{b^2\Delta^2}(b^2Q + s)s_0 = 0.$$

Letting $y^i = \delta b^i$ for a sufficiently small $\delta > 0$ yields

$$-\delta\{\nu + (k - \epsilon b^2)\mu\}b^2 = 0.$$

We conclude that

(47)
$$\nu + (k - \epsilon b^2)\mu = 0.$$

Then (46) is reduced to

$$\frac{\Phi}{b^2 \Delta^2} (b^2 Q + s) s_0 = 0.$$

Since $\Phi \neq 0$ and $b^2Q + s \neq 0$, we conclude that

 $s_0 = 0.$

Then

$$r_0 = -s_0 = 0.$$

It follows from (34) that

$$r_{ij} = ka_{ij} - \epsilon b_i b_j$$

Contracting (48) with b^i gives

$$r_j = (k - \epsilon b^2)b_j = 0.$$

Since $\beta \neq 0$, we get

(49) $k = \epsilon b^2$

and (48) becomes

$$r_{ij} = \epsilon (b^2 a_{ij} - b_i b_j).$$

Finally, (44) follows from (35), (47) and (49).

If $\epsilon \neq 0$, then letting s = 0 in (44) yields that $c/\epsilon = constant$ since b = constant.

6. $\Phi \neq 0$ and $\Upsilon \neq 0$

In this section, we shall consider the case when $\phi = \phi(s)$ satisfies

(50) $\Phi \neq 0, \qquad \Upsilon \neq 0.$

First, we need the following

LEMMA 6.1: Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric on an *n*-dimensional manifold. Assume that $\phi = \phi(s)$ satisfies (50). Suppose that *F* has isotropic *S*-curvature, $\mathbf{S} = (n+1)cF$. Then

(51)
$$r_{ij} = ka_{ij} - \epsilon b_i b_j - \lambda (s_i b_j + s_j b_i),$$

where $\lambda = \lambda(x), k = k(x)$ and $\epsilon = \epsilon(x)$ are scalar functions of x and

(52)
$$-2s(k-\epsilon b^2)\Psi + (k-\epsilon s^2)\frac{\Phi}{2\Delta^2} + (n+1)c\phi - s\nu = 0,$$

where

(53)
$$\nu := -\frac{f'(b)}{bf(b)}(k - \epsilon b^2)$$

If in addition $s_0 \neq 0$, then

(54)
$$-2\Psi - \frac{Q\Phi}{\Delta^2} - \lambda \left(\frac{s\Phi}{\Delta^2} - 2\Psi b^2\right) = \delta,$$

where

(55)
$$\delta := -\frac{f'(b)}{bf(b)}(1-\lambda b^2).$$

Proof. By assumption, $\Phi \neq 0$. Similar to the proof of Lemma 5.1, it follows from (28) that there is a function k = k(x) independent of s, such that

(56)
$$\bar{r}_{00} = k\bar{\alpha}^2,$$

(57)
$$s\left(\frac{s\Phi}{2\Delta^2} - 2\Psi b^2\right)r_{11} + (n+1)cb^2\phi + k\frac{\Phi}{2\Delta^2}(b^2 - s^2) = sbt_1.$$

Let

$$r_{11} = k - \epsilon b^2,$$

where $\epsilon = \epsilon(x)$ is independent of s. By (25), $t_1 = b\nu$, where ν is given by (53). Plugging them into (57) yields (52).

Suppose that $s_0 = 0$. Then

$$bs_{1A} = s_A = 0.$$

Then (29) is reduced to

(58)
$$\left(\frac{s\Phi}{\Delta^2} - 2\Psi b^2\right)r_{1A} - bt_A = 0.$$

By assumption, $\Upsilon \neq 0$, we know that $\frac{s\Phi}{\Delta^2} - 2\Psi b^2$ is not independent of s. It follows from (58) that

 $r_{1A} = 0, \quad t_A = 0.$

The above identities together with $r_{11} = k - \epsilon b^2$ and $t_1 = b\nu$ imply the following identities

(59)
$$r_{ij} = ka_{ij} - \epsilon b_i b_j.$$

Suppose that $s_0 \neq 0$. Then $s_{A_o} = bs_{1A_o} \neq 0$ for some A_o .

Differentiating (29) with respect to s yields

(60)
$$\Upsilon r_{1A} - \left[\frac{Q\Phi}{\Delta^2} + 2\Psi\right]' b^2 s_{1A} = 0$$

Let

$$\lambda := -\frac{r_{1A_o}}{b^2 s_{1A_o}}.$$

Plugging it into (60) yields

(61)
$$-\lambda\Upsilon - \left[\frac{Q\Phi}{\Delta^2} + 2\Psi\right]' = 0.$$

Vol. 169, 2009

It follows from (61) that

$$\delta := -\frac{Q\Phi}{\Delta^2} - 2\Psi - \lambda \left[\frac{s\Phi}{\Delta^2} - 2\Psi b^2\right]$$

is a number independent of s. By assumption that $\Upsilon \neq 0$, we obtain from (60) and (61) that

(62)
$$r_{1A} + \lambda b^2 s_{1A} = 0.$$

(56) and (62) together with $r_{11} = k - \epsilon b^2$ imply that

(63)
$$r_{ij} + \lambda(b_i s_j + b_j s_i) = k a_{ij} - \epsilon b_i b_j.$$

By (25) and (62),

$$t_A = \frac{f'(b)}{f(b)} (b^2 \lambda - 1) s_{1A}.$$

On the other hand, by (29) and (62), we obtain

$$bt_A = \delta b^2 s_{1A}.$$

Combining the above identities, we get (55).

LEMMA 6.2: Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric. Suppose that $\phi = \phi(s)$ satisfies (50) and $\phi \neq k_1\sqrt{1+k_2s^2} + k_3s$ for any constants $k_1 > 0$, k_2 and k_3 . If F has isotropic S-curvature, then

$$r_j + s_j = 0.$$

Proof. Suppose that $r_j + s_j \neq 0$, then $b := \|\beta_x\|_{\alpha} \neq constant$ in a neighborhood. We view b as a variable in (52) and (54). Since $\phi = \phi(s)$ is a function independent of x, (52) and (54) actually give rise infinitely many ODEs on ϕ .

First, we consider (52). Let

$$eq := \Delta^2 \Big\{ -2s(k-\epsilon b^2)\Psi + (k-\epsilon s^2)\frac{\Phi}{2\Delta^2} + (n+1)c\phi - s\nu \Big\}.$$

We have

$$eq = \Xi_0 + \Xi_2 b^2 + \Xi_4 b^4,$$

where Ξ_0, Ξ_2, Ξ_4 are independent of b and

$$\Xi_4 := \{ (\epsilon - \nu)s + (n+1)c\phi \} \frac{\phi^2}{(\phi - s\phi')^4} (\phi'')^2.$$

It follows from (52) that eq = 0. Thus

 $\Xi_0 = 0, \quad \Xi_2 = 0, \quad \Xi_4 = 0.$

Since $\phi'' \neq 0$, the equation $\Xi_4 = 0$ is equivalent to the following ODE:

$$(\epsilon - \nu)s + (n+1)c\phi = 0.$$

we conclude that

$$\epsilon = \nu, \quad c = 0.$$

Then by a direct computation we get

$$\Xi_0 + \Xi_2 s^2 = -\frac{1}{2} (1 + sQ) \{ (n-1)(k - \epsilon s^2)(Q - sQ') + 2kQ + 2\epsilon s \}.$$

Then $\Xi_0 = 0$ and $\Xi_2 = 0$ imply that

(64)
$$(n-1)(k-\epsilon s^2)(Q-sQ') + 2kQ + 2\epsilon s = 0,$$

Suppose that $(k, \epsilon) \neq 0$. We claim that $k \neq 0$. If this is not true, i.e., k = 0, then $\epsilon \neq 0$ and (64) is reduced to

$$-(n-1)s(Q - sQ') + 2 = 0.$$

Letting s = 0, we get a contradiction.

Now we have that $k \neq 0$. It is easy to see that Q(0) = 0. Let

$$\tilde{Q} := Q(s) - sQ'(0)$$

Plugging it into (64) yields

$$(n-1)(k-\epsilon s^2)(\tilde{Q}-s\tilde{Q}')+2k\tilde{Q}+2(kQ'(0)+\epsilon)s=0.$$

Since $\tilde{Q} = q_m s^m + o(s^m)$ where m > 1 is an integer, we see that $kQ'(0) + \epsilon = 0$. The above equation is reduced to

$$(n-1)(k-\epsilon s^2)(\tilde{Q}-s\tilde{Q}')+2k\tilde{Q}=0.$$

We obtain

$$\tilde{Q} = c_1 \frac{s^{(n+1)/(n-1)}}{(k-\epsilon s^2)^{1/(n-1)}}.$$

We must have $c_1 = 0$, that is, $\tilde{Q} = 0$. We get

$$Q(s) - sQ'(0) = 0.$$

Then it follows that

$$Q(s) = Q'(0)s.$$

In this case, $\phi = c_1 \sqrt{1 + c_2 s^2}$ where $c_1 > 0$ and c_2 are numbers independent of s. This case is excluded in the assumption. Therefore, k = 0 and $\epsilon = 0$. Then (51) is reduced to

$$r_{ij} = -\lambda(s_j b_i + s_i b_j).$$

Then

$$r_j + s_j = (1 - \lambda b^2) s_j.$$

By the assumption at the beginning of the proof, $r_j + s_j \neq 0$, we conclude that $1 - \lambda b^2 \neq 0$ and $s_j \neq 0$. By Lemma 6.1, $\phi = \phi(s)$ satisfies (54). Let

$$EQ := \Delta^2 \bigg\{ -2\Psi - \frac{Q\Phi}{\Delta^2} - \lambda \Big(\frac{s\Phi}{\Delta^2} - 2\Psi b^2 \Big) - \delta \bigg\}.$$

We have

$$EQ = \Omega_0 + \Omega_2 b^2 + \Omega_4 b^4$$

where $\Omega_0, \Omega_2, \Omega_4$ are independent of b and

$$\Omega_4 = (Q')^2 (\lambda - \delta).$$

By (54), EQ = 0. Thus

$$\Omega_0 = 0, \quad \Omega_2 = 0, \quad \Omega_4 = 0.$$

Since $Q' \neq 0$, $\Omega_4 = 0$ implies that

 $\delta = \lambda.$

By a direct computation, we get

$$\Omega_0 + \Omega_2 s^2 = (1 + sQ)\{(n+1)Q(Q - sQ') - Q' + \lambda[ns(Q - sQ') - 1]\}.$$

The equations $\Omega_0 = 0$ and $\Omega_2 = 0$ imply that $\Omega_0 + \Omega_2 s^2 = 0$, that is,

$$(n+1)Q(Q - sQ') - Q' + \lambda[ns(Q - sQ') - 1] = 0.$$

We obtain

$$Q = -\frac{[k_0 n(n+1) - 1]\lambda s \pm \sqrt{\lambda k_0 (k_0 (1+n)^2 - 1 + \lambda s^2)}}{k_0 (n+1)^2 - 1}$$

Plugging it into $\Omega_2 = 0$ yields

$$k_0\lambda = 0.$$

Then

$$Q = \frac{\lambda s}{k_0(n+1)^2 - 1}.$$

This implies that $\phi = k_1 \sqrt{1 + k_2 s^2}$ where $k_1 > 0$ and k_2 are numbers independent of s. This case is excluded in the assumption of the lemma. Therefore, $r_j + s_j = 0$.

PROPOSITION 6.3: Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an (α, β) -metric. Suppose that $\phi = \phi(s)$ satisfies (50) and $\phi \neq k_1 \sqrt{1 + k_2 s^2} + k_3 s$ for any constants $k_1 > 0$, k_2 and k_3 . If F is of isotropic S-curvature, $\mathbf{S} = (n+1)cF$, then

(65)
$$r_{ij} = \epsilon (b^2 a_{ij} - b_i b_j), \quad s_j = 0,$$

where $\epsilon = \epsilon(x)$ is a scalar function on M and $\phi = \phi(s)$ satisfies

(66)
$$\epsilon (b^2 - s^2) \frac{\Phi}{2\Delta^2} = -(n+1)c\phi$$

Proof. Contracting (51) with b^i yields

(67)
$$r_j + s_j = (k - \epsilon b^2)b_j + (1 - \lambda b^2)s_j.$$

By Lemma 6.2, $r_j + s_j = 0$. It follows from (67) that

(68)
$$(1 - \lambda b^2)s_j + (k - \epsilon b^2)b_j = 0.$$

Contracting (68) with b^j yields

$$(k - \epsilon b^2)b^2 = 0.$$

We get

$$k = \epsilon b^2$$
.

Then (51) is reduced to

$$r_{ij} = \epsilon (b^2 a_{ij} - b_i b_j) - \lambda (b_i s_j + b_j s_i).$$

By (53),

 $\nu = 0.$

Then (52) is reduced to (66).

We claim that $s_0 = 0$. Suppose that $s_0 \neq 0$. By (68), we conclude that

$$\lambda = 1/b^2.$$

By (55),

$$\delta = 0.$$

It follows from (54) that

$$(b^2Q + s)\Phi = 0.$$

This is impossible by the assumption $\Phi \neq 0$.

7. Proof of Theorem 1.1

Notice that in Lemma 6.1, there is no restriction on ϕ other than (50). Let $\phi = k_1 \sqrt{1 + k_2 s^2} + k_3 s$, where $k_1 > 0$, k_2 and k_3 are numbers independent of s. It is easy to check that, if $k_3 \neq 0$, then ϕ satisfies (50). Let $F = \alpha \phi(\beta/\alpha)$, where α is a Riemannian metric and β is a 1-form on an *n*-dimensional manifold. It is easy to see that if F is a Finsler metric, then $1 + k_2 b^2 > 0$, where $b := \|\beta_x\|_{\alpha}$. By Lemma 6.1, we can easily prove Theorem 1.1.

Proof of Theorem 1.1. Assume that F is of isotropic S-curvature, $\mathbf{S} = (n+1)cF$. By Lemma 6.1, β satisfies (51) and ϕ satisfies (52) and, further, it satisfies (54) if $s_0 \neq 0$.

First, we plug $\phi = k_1 \sqrt{1 + k_2 s^2} + k_3 s$ into

$$eq := -2s(k-\epsilon b^2)\Psi + (k-\epsilon s^2)\frac{\Phi}{2\Delta^2} + (n+1)c\phi - s\nu$$

By (52), the coefficients of the Taylor expansion of eq in s must be zero. We obtain

$$c = \frac{k_3 k}{2(1+k_2 b^2)k_1^2}$$
$$\nu = \left\{ \left(\frac{n}{1+k_2 b^2} + 1\right) \frac{k_3^2}{k_1^2} - k_2 \right\} k$$
$$\epsilon = \left\{ \frac{k_3^2}{k_1^2} - k_2 \right\} k.$$

Assume that $s_0 \neq 0$. We plug $\phi = k_1 \sqrt{1 + k_2 s^2} + k_3 s$ into

$$EQ = -2\Psi - \frac{Q\Phi}{\Delta^2} - \lambda \left(\frac{s\Phi}{\Delta^2} - 2\Psi b^2\right) - \delta.$$

By (54), the coefficients of the Taylor expansion of EQ in s must be zero. We obtain

$$\lambda = \frac{k_3^2}{k_1^2} - k_2$$

$$\delta = \left(\frac{n}{1 + k_2 b^2} + 1\right) \frac{k_3^2}{k_1^2} - k_2.$$

This proves the necessary conditions by (51).

Conversely, if β satisfies (5), then F is of isotropic S-curvature by (20). The proof is direct, so it is omitted.

References

- D. Bao and C. Robles, On Randers metrics of constant curvature, Reports on Mathematical Physics 51 (2003), 9–42.
- D. Bao, C. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds, Journal of Differential Geometry 66 (2004), 377–435.
- [3] D. Bao and Z. Shen, Finsler metrics of constant flag curvature on the Lie group S³, Journal of the London Mathematical Society 66 (2002), 453–467.
- [4] X. Chen(g), X. Mo and Z. Shen, On the flag curvature of Finsler metrics of scalar curvature, Journal of the London Mathematical Society 68 (2003), 762–780.
- [5] X. Chen(g) and Z. Shen, Randers metrics with special curvature properties, Osaka Journal of Mathematics 40 (2003), 87–101.
- [6] X. Cheng and Z. Shen, Projectively flat Finsler metrics with almost isotropic Scurvature, Acta Mathematica Scientia 26B (2006), 307–313.
- [7] X. Cheng and Z. Shen, Randers metrics of scalar flag curvature, 2006, preprint.
- [8] S. S. Chern and Z. Shen, *Riemann–Finsler Geometry*, World Scientific Publishing Co. Pte. Ltd., Singapore, 2005.
- [9] C.-W. Kim and J.-W. Yim, Finsler manifolds with positive constant flag curvature, Geometriae Dedicata 98 (2003), 47–56.
- [10] B. Li and Z. Shen, On a class of weak Landsberg metrics, Science in China Series A 50 (2007), 75–85.
- [11] B. Li and Z. Shen, On a class of projectively flat Finsler metrics with constant flag curvature, International Journal of Mathematics 18 (2007), 1–12.
- [12] Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Advances in Mathematics 128 (1997), 306–328.
- [13] Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
- [14] Z. Shen, Lectures on Finsler Geometry, World Scientific Co., Singapore, 2001.
- [15] Z. Shen, Finsler metrics with K=0 and S=0, Canadian Journal of Mathematics 55 (2003), 112–132.
- [16] Z. Shen, Landsberg curvature, S-curvature, and Riemann curvature, in A Sampler of Finsler Geometry, Mathematical Sciences Research Institute Publications, 50, Cambridge University Press, Cambridge, 2004, pp. 303–355.
- [17] Z. Shen, Nonpositively curved Finsler manifolds with constant S-curvature, Mathematische Zeitschrift 249 (2005), 625–639.
- [18] Z. Shen, On a class of Landsberg metrics in Finsler geometry, Canadian Journal of Mathematics, to appear.
- [19] Z. Shen and G. C. Yildirim, A characterization of Randers metrics of scalar flag curvature, 2008, preprint.
- [20] Z. Shen and H. Xing, On Randers metrics with isotropic S-curvature, Acta Mathematica Sinica, English Series 24 (2008), 789–796.