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1. Introduction

The S-curvature S = S(x, y) is an important non-Riemannian quantity in

Finsler geometry which was first introduced by the second author when he stu-

died volume comparison in Riemann-Finsler geometry [12]. The second author

proved that the Bishop-Gromov volume comparison holds for Finsler manifolds

with vanishing S-curvature. He also proved that the S-curvature and the Ricci

curvature determine the local behavior of the Busemann-Hausdorff measure of

small metric balls around a point [14]. Recent study shows that the S-curvature

plays a very important role in Finsler geometry (cf., [9],[15],[17]). It interacts

with the flag curvature in a mysterious way. The flag curvature K = K(P, y) is

a Riemannian quantity which is a natural extension of the sectional curvature

in Riemannian geometry. The first problem is to understand Finsler metrics

whose flag curvature is independent of P containing a tangent vector y, i.e.,

K = K(x, y) is a scalar function on the tangent bundle. For Riemannian met-

rics of scalar flag curvature, K = K(x) is independent of tangent vector y at

each point x. For Finsler metrics of scalar flag curvature, the flag curvature can

take a very general form. It is known that, for a Finsler metric F = F (x, y) of

scalar flag curvature, if the S-curvature is almost isotropic, i.e.,

(1) S = (n+ 1)cF + η,

where c = c(x) is a scalar function and η is a closed 1-form (if η = 0, then the

S-curvature is said to be isotropic, see Definition 3.1), then the flag curvature

must be in the following form

(2) K =
3c̃xmym

F
+ σ,

where σ = σ(x) and c̃ = c̃(x) are scalar functions with c − c̃ = constant [4].

This shows that S-curvature has impact on the flag curvature of Finsler metrics.

Therefore it is an important problem to study and characterize Finsler metrics

of (almost) isotropic S-curvature.

Throughout the paper, our index conventions are

1 ≤ i, j, k, . . . ≤ n, 2 ≤ A,B,C, . . . ≤ n.

In Finsler geometry, there is an important class of Finsler metrics which were

introduced and studied by G. Randers, hence are called Randers metrics. A

Randers metric on a manifold M is a Finsler metric of the form F = α + β,
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where α =
√

aij(x)yiyj is a Riemannian metric and β = bi(x)y
i is a 1-form

with ‖βx‖α < 1. Let

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i),

rj := birij , sj := bisij ,

where bi|j denote the covariant derivatives of β with respect to α. In [5], we

proved that the Randers metric F = α + β has isotropic S-curvature, S =

(n+ 1)c(x)F , if and only if

(3) rij + bisj + bjsi = 2c(aij − bibj).

See [1] and [20] for related work. A Finsler metric on a manifold M in the

following form is said to be of Randers type,

(4) F = k1

√

α2 + k2β2 + k3β,

where α is a Riemannian metric, β is a 1-form on M , k1 > 0, k2 and k3 6= 0

are constants. Clearly, Finsler metrics of Randers type are essentially Randers

metrics. By a simple argument, one can prove the following

Theorem 1.1: For a Finsler metric of Randers type, F = k1

√

α2 + k2β2+k3β,

it is of isotropic S-curvature, S = (n+ 1)cF if and only if β satisfies

(5) rij + τ(sibj + sjbi) =
2c(1 + k2b

2)k2
1

k3
(aij − τbibj),

where

b := ‖βx‖α, τ := k2
3/k

2
1 − k2.

Among Finsler metrics of Randers type, there are nontrivial projectively flat

(α, β)-metrics with constant flag curvature [11].

If a Randers metric is of scalar flag curvature, then 1 and 2 are actually

equivalent [7], [19]. In fact, if a Randers metric is of constant flag curvature,

then it must be of constant S-curvature [1], [2]. We have classified Randers

metrics of scalar flag curvature and isotropic S-curvature [4], [7]. Further, we

have characterized the locally projectively flat Finsler metrics with isotropic

S-curvature [6].

It is natural to consider general Finsler metrics defined by a Riemannian

metric α =
√

aijyiyj and a 1-form β = biy
i with ‖βx‖α < bo. They are

expressed in the form F = αφ(s), s = β/α, where φ(s) is a C∞ positive function

on (−bo, bo). It is known that F = αφ(β/α) is a (positive definite) Finsler metric
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for any α and β with ‖βx‖α < bo if and only if φ satisfies the following condition

(cf., [18] and [16]):

(6) φ(s) − sφ′(s) + (ρ2 − s2)φ′′(s) > 0, |s| ≤ ρ < bo.

Such a metric is called an (α, β)-metric. Clearly, Finsler metrics of Randers

type are special (α, β)-metrics defined by φ = k1

√
1 + k2s2 + k3s.

For a positive C∞ function φ = φ(s) on (−bo, bo) and a number b ∈ [0, bo),

let

Φ := −(Q− sQ′){n∆ + 1 + sQ} − (b2 − s2)(1 + sQ)Q′′,

where ∆ := 1+ sQ+(b2 − s2)Q′ and Q := φ′/(φ− sφ′). In this paper, we prove

the following

Theorem 1.2: Let F = αφ(s), s = β/α, be an (α, β)-metric on a manifold and

b := ‖βx‖α. Suppose that φ 6= k1

√
1 + k2s2 + k3s for any constants k1 > 0, k2

and k3. Then F is of isotropic S-curvature, S = (n+ 1)cF , if and only if one of

the following holds

(i) β satisfies

(7) rj + sj = 0

and φ = φ(s) satisfies

(8) Φ = 0.

In this case, S = 0.

(ii) β satisfies

(9) rij = ε
{

b2aij − bibj

}

, sj = 0,

where ε = ε(x) is a scalar function, and φ = φ(s) satisfies

(10) Φ = −2(n+ 1)k
φ∆2

b2 − s2
,

where k is a constant. In this case, S = (n+ 1)cF with c = kε.

(iii) β satisfies

(11) rij = 0, sj = 0.

In this case, S = 0, regardless of the choice of a particular φ.
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It is easy to see that (11) implies (9), while (9) implies (7). The condition

(7) is equivalent to b := ‖βx‖α = constant. See Lemma 3.3 below. Thus (8)

and (10) are independent of x ∈ M . Any solution φ = φ(s) of (10) is regular

on (−b, b), but it might be singular at s = ±b.
The mean Landsberg curvature J is another important non-Riemannian quan-

tity. It has been proved that for an (α, β)-metric F = αφ(β/α), if β has constant

length and φ satisfies (8), then F is a weakly Landsberg metric, i.e., J = 0. See

[10].

We have the following two interesting examples.

Example 1.1: Let F = α+β be the family of Randers metrics on S3 constructed

in [3] (see also [14]). It is shown that rij = 0 and sj = 0. Thus for any C∞

positive function φ = φ(s) satisfying (6), the (α, β)-metric F = αφ(β/α) has

vanishing S-curvature.

Example 1.2: Let F = αφ(β/α) be an (α, β)-metric defined on an open subset

in R3. If, at a point x = (x, y, z) ∈ R3 and in the direction y = (u, v, w) ∈ TxR
3,

α = α(x,y) and β = β(x,y) are given by

α :=
√

u2 + e2x(v2 + w2),

β := u,

then β satisfies (9) with ε = 1, b = 1. Thus if φ = φ(s) satisfies (10) for

some constant k, then F = αφ(β/α) is of constant S-curvature S = (n+ 1)cF .

However, we can not find an explicit solution to (10) with k 6= 0.

Acknowledgment: The authors would like to thank the referee for his very

detailed report on this paper and many valuable suggestions.

2. Volume forms

The S-curvature is associated with a volume form. There are two important

volume forms in Finsler geometry. One is the Busemann-Hausdorff volume form

and the other is the Holmes-Thompson volume form.

The Busemann-Hausdorff volume form dVBH = σBH(x)dx is given by

σBH(x) =
ωn

Vol
{

(yi) ∈ Rn : F
(

x, yi ∂
∂xi

)

< 1
}
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and the Holmes-Thompson volume form dVHT = σHT (x)dx is given by

σHT (x) =
1

ωn

∫

{

(yi)∈Rn|F
(

x,yi ∂

∂xi

)

<1
}

det(gij)dy.

Here Vol denotes the Euclidean volume and

ωn := Vol(Bn(1)) =
1

n
Vol(Sn−1) =

1

n
Vol(Sn−2)

∫ π

0

sinn−2(t)dt

denotes the Euclidean volume of the unit ball in Rn. When F =
√

gij(x)yiyj is

a Riemannian metric, both volume forms are reduced to the same Riemannian

volume form

dVBH = dVHT =
√

det(gij(x))dx.

For an (α, β)-metric, we have the following formulas for the volume forms

dVBH and dVHT .

Proposition 2.1: Let F = αφ(s), s = β/α be an (α, β)-metric on an n-

dimensional manifold M and b := ‖βx‖α. Let dV = dVBH or dVHT . Let

f(b) :=











∫

π

0
sinn−2 tdt

∫

π

0
sinn−2 t

φ(b cos t)n
dt

if dV = dVBH

∫

π

0
(sinn−2 t)T (b cos t)dt

∫

π

0
sinn−2 tdt

if dV = dVHT ,

where T (s) := φ(φ− sφ′)n−2[(φ− sφ′) + (b2 − s2)φ′′] and b := ‖βx‖α. Then the

volume form dV is given by

dV = f(b)dVα,

where dVα =
√

det(aij)dx denotes the Riemannian volume form of α.

Proof. In a coordinate system, the determinant of gij := 1
2 [F 2]yiyj is given by

(cf., [16])

det(gij) = φn+1(φ− sφ′)n−2[(φ− sφ′) + (b2 − s2)φ′′] det(aij).

First we take an orthonormal basis at x with respect to α so that

α =
√

∑

(yi)2, β = by1,

where b = ‖βx‖α. Then the volume form dVα = σαdx at x is given by

σα =
√

det(aij) = 1.



Vol. 169, 2009 METRICS WITH ISOTROPIC S-CURVATURE 323

In order to evaluate the integrals

Vol
{

(yi) ∈ Rn : F
(

x, yi ∂

∂xi

)

< 1
}

=

∫

F (x,y)<1

dy =

∫

αφ(β/α)<1

dy

and
∫

F (x,y)<1

det(gij)dy =

∫

αφ(β/α)<1

det(gij)dy,

we take the following coordinate transformation, ψ : (s, uA) → (yi):

(12) y1 =
s√

b2 − s2
ᾱ, yA = uA,

where ᾱ =
√

∑n
A=2(u

A)2. Then

(13) α =
b√

b2 − s2
ᾱ, β =

bs√
b2 − s2

ᾱ.

Thus

F = αφ(β/α) =
bφ(s)√
b2 − s2

ᾱ

and the Jacobian of the transformation ψ : (s, uA) → (yi) is given by

b2

(b2 − s2)3/2
ᾱ.

Then

Vol{(yi) ∈ Rn : F (x, y) < 1} =

∫

bφ(s)√
b2−s2

ᾱ<1

b2

(b2 − s2)3/2
ᾱdsdu

=

∫ b

−b

b2

(b2 − s2)3/2

[

∫

ᾱ<

√
b2−s2

bφ(s)

ᾱdu
]

ds

=
1

n
Vol(Sn−2)

∫ b

−b

b2

(b2 − s2)3/2

(

√
b2 − s2

bφ(s)

)n

ds

=
1

n
Vol(Sn−2)

∫ b

−b

(b2 − s2)(n−3)/2

bn−2φ(s)n
ds

=
1

n
Vol(Sn−2)

∫ π

0

sinn−2 t

φ(b cos t)n
dt (s = b cos t).

Therefore

(14) σBH =

∫ π

0 sinn−2 tdt
∫ π

0
sinn−2 t

φ(b cos t)n dt
.
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Let

(15) T (s) := φ(φ − sφ′)n−2[(φ− sφ′) + (b2 − s2)φ′′].

Then

det(gij) = φ(s)nT (s) det(aij).

By a similar argument, we get

σHT =
1

ωn

∫

F (x,y)<1

φ(s)nT (s)dy1 · · ·dyn

=
1

nωn
Vol(Sn−2)

∫ b

−b

b2

(b2 − s2)3/2

(

√
b2 − s2

b

)n

T (s)ds

=

∫ π

0
(sinn−2 t)T (b cos t)dt

∫ π

0
sinn−2 tdt

.

Thus

(16) σHT =

∫ π

0
(sinn−2 t)T (b cos t)dt

∫ π

0 sinn−2 tdt
.

The above formulas for σBH and σHT are given in a special coordinate system

at x and σα = 1. Thus dV = f(b)dVα. This proves the proposition.

Note that if b = constant, then f(b) = constant. In this case, both dVBH

and dVHT are constant multiples of dVα.

It is surprising to see that dVHT = dVα for certain functions φ.

Corollary 2.2: Let F = αφ(s), s = β/α, be an (α, β)-metric on an n-

dimensional manifold M . Let T = T (s) be defined in (15). Suppose that

T (s) − 1 is an odd function of s. Then dVHT = dVα.

Proof: Let h(s) = T (s) − 1. By assumption h(−s) = −h(s). It is easy to see

that
∫ π

0

(sinn−2 t)h(b cos t)dt = 0.

Thus
∫ π

0

(sinn−2 t)T (b cos t)dt =

∫ π

0

sinn−2 tdt.

This implies that σHT = 1 in the above special coordinate system at x. Then

in a general coordinate system σHT = σα.

If φ = 1 + s, then T = 1 + s and T (s)− 1 is an odd function of s. Then for a

Randers metric, dVHT = dVα. This fact is known to Y. B. Shen.
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3. The S-Curvature

In this section, we are going to find a formula for the S-curvature of an (α, β)-

metric on an n-dimensional manifold M .

Let F = F (x, y) be a Finsler metric on an n-dimensional manifold M . There

is a notion of distortion τ = τ(x, y) on TM associated with a volume form

dV = σ(x)dx.

τ(x, y) = ln

√

det(gij(x, y))

σ(x)
.

In fact, τ(x, y) depends only on Fx := F |TxM on TxM at each point x. Moreover,

τ(x, y) = τ(x) at a point x ∈ M if and only if Fx is Euclidean on TxM . The

S-curvature is defined by

S(x, y) =
d

dt

[

τ
(

c(t), ċ(t)
)]∣

∣

∣

t=0
,

where c(t) is the geodesic with c(0) = x and ċ(0) = y [14]. From the definition,

we see that the S-curvature S(y) measures the rate of change in the distortion

on (TxM,Fx) in the direction y ∈ TxM .

Let G = yi ∂
∂xi −2Gi ∂

∂yi denote the spray of F and dV = σ(x)dx be a volume

form on M . The spray coefficients Gi are defined by

Gi =
1

4
gil

{

[F 2]xjylyj − [F 2]xl

}

.

Then the S-curvature (with respect to dV ) is given by

S =
∂Gm

∂ym
− ym ∂

∂xm
(lnσ).

An important property is that S = 0 for Berwald spaces with respect to

the Busemann-Hausdorff volume form dVBH [12], [13]. This explains why we

choose the Busemann-Hausdorff volume form to define the S-curvature of a

Finsler metric.

Definition 3.1: Let F be a Finsler metric on an n-dimensional manifold M . Let

S denote the S-curvature of F with respect to dVBH .

(a) F is of almost isotropic S-curvature if

S = (n+ 1)cF + η,

where c = c(x) is a scalar function and η is a closed 1-form;

(b) F is of isotropic S-curvature if c = c(x) is a scalar function and η = 0;

(c) F is of constant S-curvature if c is a constant and η = 0.
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Now we compute the S-curvature of an (α, β)-metric on a manifold. Let

F = αφ(s), s = β/α.

Let Ḡi denote the spray coefficients of α. We have the following formula for the

spray coefficients Gi of F (cf., [8], [16]):

Gi = Ḡi + αQsi
0 + Θ{−2Qαs0 + r00}

yi

α
+ Ψ{−2Qαs0 + r00}bi,

where si
j := aihshj , s

i
0 := si

jy
j , s0 := siy

i, r00 := rijy
iyj and

(17) Q :=
φ′

φ− sφ′
, Θ =

Q− sQ′

2∆
, Ψ =

Q′

2∆
,

where ∆ := 1 + sQ+ (b2 − s2)Q′.

It is easy to see that if φ = φ(s) satisfies

b2Q+ s = 0,

then

φ = a0

√

b2 − s2,

where a0 is a number independent of s.

Lemma 3.2: If φ = φ(s) satisfies

Ψ = constant,

then

φ = k1

√

1 + k2s2 + k3s,

where k1, k2 and k3 are numbers independent of s.

To compute the S-curvature, we need the following identities:

∂s

∂ym
=

1

α

{

bm − s
ym

α

}

,

∂α

∂ym
=
ym

α
,

∂Ḡm

∂ym
= ym ∂

∂xm

(

lnσα

)

,

where ym := amjy
j. Using the above identities, we obtain

∂Gm

∂ym
= ym ∂

∂xm
(lnσα) + 2Ψ(r0 + s0) − α−1 Φ

2∆2
(r00 − 2αQs0),
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where

(18) Φ := −(Q− sQ′){n∆ + 1 + sQ} − (b2 − s2)(1 + sQ)Q′′.

By Proposition 2.1, dV = σdx = f(b)σαdx. Thus

ym ∂

∂xm
(lnσ) =

f ′(b)

f(b)
ym ∂b

∂xm
+ ym ∂

∂xm
(lnσα).

(19) ym ∂b

∂xm
=
bibi|my

m

b
=
r0 + s0

b
.

Then the S-curvature is given by

(20) S =
{

2Ψ − f ′(b)

bf(b)

}

(r0 + s0) − α−1 Φ

2∆2
(r00 − 2αQs0).

Lemma 3.3: Let β be a 1-form on a Riemannian manifold (M,α). Then b(x) :=

‖βx‖α = constnt if and only if β satisfies the following equation:

(21) rj + sj = 0.

Proof. This follows immediately from (19).

In the case when b = constant, the S-curvature is given by

(22) S = −α−1 Φ

2∆2
(r00 − 2αQs0).

We can prove the following

Proposition 3.4: Let F = αφ(β/α) be an (α, β)-metric on an n-manifold. If

β and φ satisfy conditions in Theorem 1.2 (i) or (ii) or (iii), then F has isotropic

S-curvature.

Proof. If β satisfies (7) and φ satisfies (8), then it follows from (20) that S = 0.

If β satisfies (9), then

r00 = ε(b2 − s2)α2, r0 = 0, s0 = 0.

By (10) and the above equations, we get from (20) that

S = −αε(b2 − s2)
Φ

2∆2
= (n+ 1)kεαφ = (n+ 1)kεF.

If β satisfies (11), then

r00 = 0, r0 = 0, s0 = 0.

It follows from (20) that S = 0.
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To prove the necessary conditions in Theorem 1.2, we consider an (α, β)-

metric F = αφ(β/α) with isotropic S-curvature, S = (n + 1)cF . By (20), the

equation S = (n+ 1)cF is equivalent to the following equation:

(23) α−1 Φ

2∆2
(r00 − 2αQs0) − 2Ψ(r0 + s0) = −(n+ 1)cF + θ,

where

(24) θ := − f ′(b)

bf(b)
(r0 + s0).

To simplify the equation (23), we choose special coordinates. Fix an arbitrary

point x. Take a local coordinate system at x as in (12). We have

r1 = br11, rA = br1A,

s1 = 0, sA = bs1A.

Let

r̄10 :=
n

∑

A=2

r1Ay
A, s̄10 :=

n
∑

A=2

s1Ay
A r̄00 :=

n
∑

A,B=2

rABy
AyB,

r̄0 :=

n
∑

A=2

rAy
A s̄0 :=

n
∑

A=2

sAy
A.

Let θ = tiy
i. Then ti are given by

(25) t1 = −f
′(b)

f(b)
r11, tA = −f

′(b)

f(b)
(r1A + s1A).

From (12), we have

(26) r0 =
sbr11√
b2 − s2

ᾱ+ br̄10, s0 = s̄0 = bs̄10

and

(27) r00 =
s2ᾱ2

b2 − s2
r11 + 2

sᾱ√
b2 − s2

r̄10 + r̄00.

Substituting (26) and (27) into (23) and by use of (13), we find that (23) is

equivalent to the following two equations:

(28)
Φ

2∆2
(b2 − s2)r̄00 = −

{

s
( sΦ

2∆2
− 2Ψb2

)

r11 + (n+ 1)cb2φ− sbt1

}

ᾱ2,

(29)
( sΦ

∆2
− 2Ψb2

)

(r1A + s1A) − (b2Q+ s)
Φ

∆2
s1A − btA = 0.
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Let

Υ :=
[ sΦ

∆2
− 2Ψb2

]′
.

We see that Υ = 0 if and only if

sΦ

∆2
− 2Ψb2 = b2µ,

where µ = µ(x) is independent of s. We divide the problem into three cases:

(i) Φ = 0, (ii) Φ 6= 0, Υ = 0 and (iii) Φ 6= 0, Υ 6= 0.

4. Φ = 0

In this section, we study the simplest case when Φ = 0.

Proposition 4.1: Let F = αφ(β/α) be an (α, β)-metric. Assume that Φ = 0

but φ 6= k1

√
1 + k2s2 + k3s for any constants k1 > 0, k2 and k3. If F has

isotropic S-curvature, then

r0 + s0 = 0.

In this case, S = 0.

Proof. Take a special coordinate system at x as in (12). (28) and (29) are

reduced to

(30) s
{ f ′(b)

bf(b)
− 2Ψ

}

b2r11 + (n+ 1)cb2φ = 0

(31)
{ f ′(b)

bf(b)
− 2Ψ

}

b2(r1A + s1A) = 0.

Letting s = 0 in (30) yields

c = 0

and

(32)
{ f ′(b)

bf(b)
− 2Ψ

}

r11 = 0.

If
f ′(b)

bf(b)
− 2Ψ = 0,

then, by Lemma 3.2, we have

φ = k1

√

1 + k2s2 + k3s,
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where k1 > 0, k2 and k3 are numbers independent of s. But this is impossible

by assumption. Thus
f ′(b)

bf(b)
− 2Ψ 6= 0.

¿From (30) and (31), we conclude that

r11 = 0, r1A + s1A = 0.

5. Φ 6= 0, Υ = 0

First, note that Υ = 0 implies that

(33)
sΦ

∆2
− 2Ψb2 = b2µ,

where µ = µ(x) is a function on M independent of s. First, we prove the

following

Lemma 5.1: Let F = αφ(β/α) be an (α, β)-metric. Assume that Φ 6= 0 and

Υ = 0. If F has isotropic S-curvature, S = (n+ 1)cF , then β satisfies

(34) rij = kaij − εbibj +
1

b2
(ribj + rjbi),

where k = k(x), ε = ε(x), and φ = φ(s) satisfies the following ODE:

(35) (k − εs2)
Φ

2∆2
=

{

ν + (k − εb2)µ
}

s− (n+ 1)cφ,

where ν = ν(x). If s0 6= 0, then φ satisfies the following additional ODE:

(36)
Φ

∆2
(Qb2 + s) = b2(µ+ λ),

where λ = λ(x).

Proof. Since Φ 6= 0 and notice that r̄00 and ᾱ are independent of s, it follows

from (28) and (29) that in a special coordinate system (s, ya) at a point x,

(37) rAB = kδAB,

(38) s
( sΦ

2∆2
− 2Ψb2

)

r11 + (n+ 1)cb2φ+ k
Φ

2∆2
(b2 − s2) = bst1,

(39)
( sΦ

∆2
− 2Ψb2

)

(r1A + s1A) − (b2Q+ s)
Φ

∆2
s1A − btA = 0,

where k = k(x) is independent of s.
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Let

r11 = −(k − εb2).

Then (34) holds. By (33), we have

sΦ

2∆2
− 2Ψb2 = b2µ− sΦ

2∆2
.

Then (38) and (39) become

(40) b(k − εs2)
Φ

2∆2
= st1 + sbµ(k − b2ε) − (n+ 1)cbφ.

(41) b2µ(r1A + s1A) − Φ

∆2
(Qb2 + s)s1A − btA = 0.

Letting t1 = bν in (40) we get (35).

Suppose that s0 6= 0. Rewrite (41) as
{

b2µ− Φ

∆2
(Qb2 + s)

}

s1A = btAbb− b2µr1A.

We can see that there is a function λ = λ(x) on M such that

µb2 − Φ

∆2
(Qb2 + s) = −b2λ.

This gives (36).

Lemma 5.2: Let F = αφ(β/α) be an (α, β)-metric. Assume that

φ 6= k1

√

1 + k2s2 + k3s

for any constants k1 > 0, k2 and k3. If Υ = 0, then b = constant.

Proof. Suppose that b 6= constant. Then b can be viewed as a variable over the

manifold. By assumption,

sΦ

∆2
− 2Ψb2 = b2µ,

where µ = µ(x). Note that ∆2( sΦ
∆2 − 2Ψb2 − b2µ) is a polynomial of degree six

in b by (17). More precisely, we have

(42) −µQ′2b6 −
{

Q′2 − 2µQ′(1 + sQ− s2Q′)
}

b4 + (· · · )b2 + (· · · ) = 0.

Thus

µQ′2 = 0, Q′2 − 2µQ′(1 + sQ− s2Q′) = 0.

Then Q′ = 0, which implies that φ = 1 + cs. This is impossible as we exclude

the case φ = k1

√
1 + k2s2 + k3s.
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Proposition 5.3: Let F = αφ(β/α) be an (α, β)-metric. Suppose that

b2Q+ s 6= 0, Φ 6= 0 and Υ = 0. If F has isotropic S-curvature, S = (n+ 1)cF ,

then

(43) rij = ε(b2aij − bibj), sj = 0,

where ε = ε(x) is a scalar function, and φ = φ(s) satisfies

(44) ε(b2 − s2)Φ = −2(n+ 1)cφ∆2.

If ε 6= 0, then c/ε = constant.

Proof. First by Lemmas 5.2 and 3.3, we have

r0 + s0 = 0.

Then by (20), we receive

S = −α−1 Φ

2∆2
{r00 − 2αQs0}.

By Lemma 5.1,

r00 = (k − εs2)α2 +
2s

b2
r0α.

Then

S = −(k − εs2)
Φ

2∆2
α+

Φ

b2∆2
(b2Q+ s)s0.

By (35), we get

(45) S = −s{ν + (k − εb2)µ}α+
Φ

b2∆2
(b2Q+ s)s0 + (n+ 1)cφα.

By our assumption, S = (n+ 1)cF , we get from (45) that

(46) −s{ν + (k − εb2)µ}α+
Φ

b2∆2
(b2Q+ s)s0 = 0.

Letting yi = δbi for a sufficiently small δ > 0 yields

−δ{ν + (k − εb2)µ}b2 = 0.

We conclude that

(47) ν + (k − εb2)µ = 0.

Then (46) is reduced to
Φ

b2∆2
(b2Q+ s)s0 = 0.

Since Φ 6= 0 and b2Q+ s 6= 0, we conclude that

s0 = 0.



Vol. 169, 2009 METRICS WITH ISOTROPIC S-CURVATURE 333

Then

r0 = −s0 = 0.

It follows from (34) that

(48) rij = kaij − εbibj .

Contracting (48) with bi gives

rj = (k − εb2)bj = 0.

Since β 6= 0, we get

(49) k = εb2

and (48) becomes

rij = ε(b2aij − bibj).

Finally, (44) follows from (35), (47) and (49).

If ε 6= 0, then letting s = 0 in (44) yields that c/ε = constant since b =

constant.

6. Φ 6= 0 and Υ 6= 0

In this section, we shall consider the case when φ = φ(s) satisfies

(50) Φ 6= 0, Υ 6= 0.

First, we need the following

Lemma 6.1: Let F = αφ(s), s = β/α, be an (α, β)-metric on an n-dimensional

manifold. Assume that φ = φ(s) satisfies (50). Suppose that F has isotropic

S-curvature, S = (n+ 1)cF . Then

(51) rij = kaij − εbibj − λ(sibj + sjbi),

where λ = λ(x), k = k(x) and ε = ε(x) are scalar functions of x and

(52) −2s(k − εb2)Ψ + (k − εs2)
Φ

2∆2
+ (n+ 1)cφ− sν = 0,

where

(53) ν := − f ′(b)

bf(b)
(k − εb2).

If in addition s0 6= 0, then

(54) −2Ψ − QΦ

∆2
− λ

( sΦ

∆2
− 2Ψb2

)

= δ,
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where

(55) δ := − f ′(b)

bf(b)
(1 − λb2).

Proof. By assumption, Φ 6≡ 0. Similar to the proof of Lemma 5.1, it follows

from (28) that there is a function k = k(x) independent of s, such that

(56) r̄00 = kᾱ2,

(57) s
( sΦ

2∆2
− 2Ψb2

)

r11 + (n+ 1)cb2φ+ k
Φ

2∆2
(b2 − s2) = sbt1.

Let

r11 = k − εb2,

where ε = ε(x) is independent of s. By (25), t1 = bν, where ν is given by (53).

Plugging them into (57) yields (52).

Suppose that s0 = 0. Then

bs1A = sA = 0.

Then (29) is reduced to

(58)
( sΦ

∆2
− 2Ψb2

)

r1A − btA = 0.

By assumption, Υ 6= 0, we know that sΦ
∆2 − 2Ψb2 is not independent of s. It

follows from (58) that

r1A = 0, tA = 0.

The above identities together with r11 = k−εb2 and t1 = bν imply the following

identities

(59) rij = kaij − εbibj .

Suppose that s0 6= 0. Then sAo
= bs1Ao

6= 0 for some Ao.

Differentiating (29) with respect to s yields

(60) Υ r1A −
[QΦ

∆2
+ 2Ψ

]′
b2s1A = 0.

Let

λ := − r1Ao

b2s1Ao

.

Plugging it into (60) yields

(61) −λΥ −
[QΦ

∆2
+ 2Ψ

]′
= 0.
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It follows from (61) that

δ := −QΦ

∆2
− 2Ψ − λ

[ sΦ

∆2
− 2Ψb2

]

is a number independent of s. By assumption that Υ 6= 0, we obtain from (60)

and (61) that

(62) r1A + λb2s1A = 0.

(56) and (62) together with r11 = k − εb2 imply that

(63) rij + λ(bisj + bjsi) = kaij − εbibj .

By (25) and (62),

tA =
f ′(b)

f(b)
(b2λ− 1)s1A.

On the other hand, by (29) and (62), we obtain

btA = δb2s1A.

Combining the above identities, we get (55).

Lemma 6.2: Let F = αφ(s), s = β/α, be an (α, β)-metric. Suppose that

φ = φ(s) satisfies (50) and φ 6= k1

√
1 + k2s2 + k3s for any constants k1 > 0, k2

and k3. If F has isotropic S-curvature, then

rj + sj = 0.

Proof. Suppose that rj + sj 6= 0, then b := ‖βx‖α 6= constant in a neighbor-

hood. We view b as a variable in (52) and (54). Since φ = φ(s) is a function

independent of x, (52) and (54) actually give rise infinitely many ODEs on φ.

First, we consider (52). Let

eq := ∆2
{

− 2s(k − εb2)Ψ + (k − εs2)
Φ

2∆2
+ (n+ 1)cφ− sν

}

.

We have

eq = Ξ0 + Ξ2b
2 + Ξ4b

4,

where Ξ0,Ξ2,Ξ4 are independent of b and

Ξ4 := {(ε− ν)s+ (n+ 1)cφ} φ2

(φ− sφ′)4
(φ′′)2.

It follows from (52) that eq = 0. Thus

Ξ0 = 0, Ξ2 = 0, Ξ4 = 0.
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Since φ′′ 6= 0, the equation Ξ4 = 0 is equivalent to the following ODE:

(ε− ν)s+ (n+ 1)cφ = 0.

we conclude that

ε = ν, c = 0.

Then by a direct computation we get

Ξ0 + Ξ2s
2 = −1

2
(1 + sQ){(n− 1)(k − εs2)(Q− sQ′) + 2kQ+ 2εs}.

Then Ξ0 = 0 and Ξ2 = 0 imply that

(64) (n− 1)(k − εs2)(Q− sQ′) + 2kQ+ 2εs = 0,

Suppose that (k, ε) 6= 0. We claim that k 6= 0. If this is not true, i.e., k = 0,

then ε 6= 0 and (64) is reduced to

−(n− 1)s(Q− sQ′) + 2 = 0.

Letting s = 0, we get a contradiction.

Now we have that k 6= 0. It is easy to see that Q(0) = 0. Let

Q̃ := Q(s) − sQ′(0).

Plugging it into (64) yields

(n− 1)(k − εs2)(Q̃− sQ̃′) + 2kQ̃+ 2(kQ′(0) + ε)s = 0.

Since Q̃ = qms
m + o(sm) where m > 1 is an integer, we see that kQ′(0)+ ε = 0.

The above equation is reduced to

(n− 1)(k − εs2)(Q̃− sQ̃′) + 2kQ̃ = 0.

We obtain

Q̃ = c1
s(n+1)/(n−1)

(k − εs2)1/(n−1)
.

We must have c1 = 0, that is, Q̃ = 0. We get

Q(s) − sQ′(0) = 0.

Then it follows that

Q(s) = Q′(0)s.

In this case, φ = c1
√

1 + c2s2 where c1 > 0 and c2 are numbers independent of

s. This case is excluded in the assumption. Therefore, k = 0 and ε = 0. Then

(51) is reduced to

rij = −λ(sjbi + sibj).
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Then

rj + sj = (1 − λb2)sj .

By the assumption at the beginning of the proof, rj + sj 6= 0, we conclude that

1 − λb2 6= 0 and sj 6= 0. By Lemma 6.1, φ = φ(s) satisfies (54). Let

EQ := ∆2
{

− 2Ψ − QΦ

∆2
− λ

( sΦ

∆2
− 2Ψb2

)

− δ
}

.

We have

EQ = Ω0 + Ω2b
2 + Ω4b

4,

where Ω0,Ω2,Ω4 are independent of b and

Ω4 = (Q′)2(λ− δ).

By (54), EQ = 0. Thus

Ω0 = 0, Ω2 = 0, Ω4 = 0.

Since Q′ 6= 0, Ω4 = 0 implies that

δ = λ.

By a direct computation, we get

Ω0 + Ω2s
2 = (1 + sQ){(n+ 1)Q(Q− sQ′) −Q′ + λ[ns(Q− sQ′) − 1]}.

The equations Ω0 = 0 and Ω2 = 0 imply that Ω0 + Ω2s
2 = 0, that is,

(n+ 1)Q(Q− sQ′) −Q′ + λ[ns(Q− sQ′) − 1] = 0.

We obtain

Q = − [k0n(n+ 1) − 1]λs±
√

λk0(k0(1 + n)2 − 1 + λs2)

k0(n+ 1)2 − 1
.

Plugging it into Ω2 = 0 yields

k0λ = 0.

Then

Q =
λs

k0(n+ 1)2 − 1
.

This implies that φ = k1

√
1 + k2s2 where k1 > 0 and k2 are numbers indepen-

dent of s. This case is excluded in the assumption of the lemma. Therefore,

rj + sj = 0.
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Proposition 6.3: Let F = αφ(s), s = β/α, be an (α, β)-metric. Suppose that

φ = φ(s) satisfies (50) and φ 6= k1

√
1 + k2s2 + k3s for any constants k1 > 0, k2

and k3. If F is of isotropic S-curvature, S = (n+ 1)cF , then

(65) rij = ε(b2aij − bibj), sj = 0,

where ε = ε(x) is a scalar function on M and φ = φ(s) satisfies

(66) ε(b2 − s2)
Φ

2∆2
= −(n+ 1)cφ.

Proof. Contracting (51) with bi yields

(67) rj + sj = (k − εb2)bj + (1 − λb2)sj .

By Lemma 6.2, rj + sj = 0. It follows from (67) that

(68) (1 − λb2)sj + (k − εb2)bj = 0.

Contracting (68) with bj yields

(k − εb2)b2 = 0.

We get

k = εb2.

Then (51) is reduced to

rij = ε(b2aij − bibj) − λ(bisj + bjsi).

By (53),

ν = 0.

Then (52) is reduced to (66).

We claim that s0 = 0. Suppose that s0 6= 0. By (68), we conclude that

λ = 1/b2.

By (55),

δ = 0.

It follows from (54) that

(b2Q+ s)Φ = 0.

This is impossible by the assumption Φ 6= 0.
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7. Proof of Theorem 1.1

Notice that in Lemma 6.1, there is no restriction on φ other than (50). Let

φ = k1

√
1 + k2s2 + k3s, where k1 > 0, k2 and k3 are numbers independent of s.

It is easy to check that, if k3 6= 0, then φ satisfies (50). Let F = αφ(β/α), where

α is a Riemannian metric and β is a 1-form on an n-dimensional manifold. It

is easy to see that if F is a Finsler metric, then 1+ k2b
2 > 0, where b := ‖βx‖α.

By Lemma 6.1, we can easily prove Theorem 1.1.

Proof of Theorem 1.1. Assume that F is of isotropic S-curvature, S = (n+1)cF .

By Lemma 6.1, β satisfies (51) and φ satisfies (52) and, further, it satisfies (54)

if s0 6= 0.

First, we plug φ = k1

√
1 + k2s2 + k3s into

eq := −2s(k − εb2)Ψ + (k − εs2)
Φ

2∆2
+ (n+ 1)cφ− sν.

By (52), the coefficients of the Taylor expansion of eq in s must be zero. We

obtain

c =
k3k

2(1 + k2b2)k2
1

ν =
{( n

1 + k2b2
+ 1

)k2
3

k2
1

− k2

}

k

ε =
{k2

3

k2
1

− k2

}

k.

Assume that s0 6= 0. We plug φ = k1

√
1 + k2s2 + k3s into

EQ = −2Ψ − QΦ

∆2
− λ

( sΦ

∆2
− 2Ψb2

)

− δ.

By (54), the coefficients of the Taylor expansion of EQ in s must be zero. We

obtain

λ =
k2
3

k2
1

− k2

δ =
( n

1 + k2b2
+ 1

)k2
3

k2
1

− k2.

This proves the necessary conditions by (51).

Conversely, if β satisfies (5), then F is of isotropic S-curvature by (20). The

proof is direct, so it is omitted.
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